

UI Patterns and Techniques
Jenifer Tidwell

 Jenifer Tidwell

Table of Contents

Introduction ...4
About Patterns ...4

Other Pattern Collections ..5
Whole UI ...6

Visual Framework ..6
Toplevel Navigation ...8
Color-Coded Divisions...10

Page Layout...12
Center Stage ...12
Titled Sections..13
Card Stack ..15
Overview Plus Detail..18
Extras On Demand ...19
Dynamic Progression ...20
Property Sheet ..21
Cascading Lists...22
Liquid Layout ...25

Forms and Input ..26
Chooser Button...26
Fill-in-the-Blanks ...28
Input Hints..29
Input Prompt...29
Forgiving Format..30
Remembered Choices...31
Illustrated Choices..31

Tables ..33
Sortable Table...33
Tree-Table ..34
Alternating Row Colors..35

Direct Manipulation ..36
Edit-in-Place...36
One-off Mode ...36
Constrained Resize ...37
Composite Selection...39

Miscellaneous..40
Smart Menu Items ..40
Rollover Effects..40
Short Description..41
Progress Indicator...42
Command History ..43

 3

UI Patterns and Techniques

Introduction
There's nothing new here.

If you've done any Web or UI design, or even thought about it much, you should say,
"Oh, right, I know what that is" to most of these patterns. But a few of them might be
new to you, and some of the familiar ones may not be part of your usual design
repertoire.

Each of these patterns (which are more general) and techniques (more specific) are
intended to help you solve design problems. They're common problems, and there's no
point in reinventing the wheel every time you need, say, a sortable table -- plenty of folks
have already done it, and learned how to do it well. Some of that knowledge is written up
here, in an easily-digestible format.

By the way, when I say "UI," I mean Web sites, desktop applications, and everything in
between (Web forms, Flash, applets, etc.). I believe that over the next few years, Web-
based UIs will become more richly interactive than they are now, and the smartest Web
designers will use the desktop world's hard-won knowledge of how to design good
interactive software. Likewise, desktop applications will gradually look more like Web
sites, with better graphic design and more Web-style navigation. I will make no
assumptions about how or when they will converge -- they may not, ultimately -- but
stylistically, there is some common ground already. Thus, you will see examples from
both worlds in here.

These patterns are intended to be read by people who have some knowledge of UI design
concepts and terminology: dialogs, selection, combo boxes, navigation bars, whitespace,
branding, and so on. It does not identify widely-accepted techniques such as wizards, as
you probably already know what they are.

If you're running short on ideas, or hung up on a difficult design quandary, read over
these and see if any of them are applicable. And don't take them as the gospel truth, either
-- what matters is whether your design works for your users.

If these are useful to you, please tell me. If not, or if you have anything to add, tell me
that too.

Jenifer Tidwell
jtidwell @ alum.mit.edu
May, 2002

About Patterns
In essence, patterns are structural and behavioral features that improve the "habitability"
of something -- a user interface, a Web site, an object-oriented program, or even a
building. They make things more usable, easier to understand, or more beautiful; they
make tools more ready-to-hand.

As such, patterns can be a description of "best practices" within a given design domain.
They capture common solutions to design tensions (usually called "forces" in pattern
literature) and thus, by definition, are not novel. They aren't off-the-shelf components;
each implementation of a pattern is a little different from every other. They aren't simple
rules or heuristics either. And they won't walk you through an entire set of design

4

 Jenifer Tidwell

decisions -- if you're looking for a complete step-by-step description of how to design a
UI, this isn't the place!

In this work, patterns are described literally as solutions to design problems, because part
of their value lies in the way they resolve tensions in various design contexts. For
instance, a UI designer who needs to pack a lot of stuff into a too-small space can use a
Card Stack. All that remains to the designer is to work on the information architecture --
how to split up the content into pieces, what to name them, etc. -- and what exactly the
Card Stack will look like when it's done. Tabs? A left-hand-side list or tree? That's up to
the designer's judgement.

Some very complete sets of patterns make up a "pattern language." These are a bit like
visual languages, in that they cover the entire vocabulary of elements used in a design
(though pattern languages are more abstract and behavioral; visual languages talk about
shapes, colors, fonts, etc.). This set isn't nearly so complete, and it contains techniques
that don't quite qualify as patterns. However, it is concise enough to be manageable and
useful.

How to Use These Patterns

• If you don't have years of design experience already, a set of patterns may serve as a
learning tool. You may want to read over it to get ideas, or refer back to specific
patterns as the need arises.

• Each pattern in this collection has at least one example. Some have many; they might
be useful as a sourcebook. You may find wisdom in the examples that is missing in
the text of the pattern.

• If you talk to users, engineers, or managers about UI design, or write specifications,
then you could use the pattern names as a way of communicating and discussing
ideas. This is another well-known benefit of pattern languages.

Ultimately, you should be able leave a reference like this behind. Experienced designers
will have internalized these ideas to the point at which they don't notice they're using
them anymore; the patterns become second nature.

Other Pattern Collections

The text that started it all was written about physical buildings, not software. Christopher
Alexander's A Pattern Language, and its companion book The Timeless Way of Building,
established the concept of patterns and described a 250-pattern multilayered pattern
language. It is often considered the gold standard for a pattern language because of its
completeness, its rich interconnectedness, and its grounding in the human response to our
built world.

In the mid-1990s, the practice of commercial software architecture was profoundly
changed by the publication of Design Patterns,by Erich Gamma, Richard Helm, Ralph
Johnson, and John Vlissides. This is a collection of patterns describing object-oriented
"micro-architectures." If you have a background in software engineering, this is the book
that probably introduced you to the idea of patterns. Many other books about software
patterns have been written since. Software patterns such as these do make software more
habitable -- for those who write the software, not those who use it!

The first substantial set of user-interface patterns was the predecessor of this patterns
collection, Common Ground. Many other collections and languages followed, notably

 5

http://www.amazon.com/exec/obidos/tg/detail/-/0195019199/ref=pd_bxgy_text_1/104-0117327-6680708?v=glance
http://www.amazon.com/exec/obidos/tg/detail/-/0195024028/ref=pd_bxgy_text_1/104-0117327-6680708?v=glance

UI Patterns and Techniques

Martijn van Welie's Interaction Design Patterns, and Jan Borchers's book A Pattern
Approach to Interaction Design. Very recently, a full-fledged Web site pattern language
was published, called The Design of Sites. I highly recommend it, especially if you're
designing traditional Web sites. If you're building applets or desktop applications, or if
you're pushing the boundaries in either domain, take a look at all of these; you might find
inspiration in any of them.

Whole UI

Visual Framework

From http://macromedia.com

Use when: You're building a Web site with several pages, or a UI with several windows
-- in other words, almost always. You want it to "hang together" and look
like one thing, deliberately designed; you want it to be easy to use and
navigate.

Why: When a UI uses consistent color, font, and layout, and when titles and
navigational aids -- "signposts" -- are in the same place every time, users
know where they are and where to find things. They don't have to figure out
a new layout each time they switch context from one page or window to
another.

Ever seen a book in which the page numbers and headings were in a different
place on each page?

A strong visual framework, repeated on each page, helps the page content
stand out more. That which is constant fades into the background of the user's
awareness; that which changes is noticed. Furthermore, if you add enough
character to the design of the visual framework, this helps with the branding
of your Web site or product -- the pages become recognizable as yours.

How: Draw up an overall look-and-feel for each page or dialog in the thing you're
building. Home pages and main windows are "special" and are usually laid
out a little differently from subsidiary pages, but they should still share
certain characteristics with the rest of the artifact.

• Color: backgrounds, text colors, accent color, etc.

• Fonts: for titles, subtitles, ordinary text, minor text.

6

http://macromedia.com/

 Jenifer Tidwell

• Writing style and grammar: titles, names, content, short descriptions,
any long blocks of text, anything that uses language.

All other pages or windows should also share the following, as appropriate:

• "You are here" signposts: titles, logos, breadcrumb trails, Card Stack
indexes such as tabs or link columns.

• Navigational devices: sets of standard links, OK/Cancel buttons, back
buttons, "quit" or "exit" buttons, Toplevel Navigation.

• Techniques used to define Titled Sections.

• Spacing and alignment: page margins, line spacing, the gaps between
labels and their associated controls, text and label justification.

• Overall layout "grid:" the placement of things on the page, in columns
and/or rows, taking into account the margins and spacing issues listed
above.

Implementation of a visual framework should make you separate stylistic
aspects of the UI from the content. This isn't a bad thing. If you define the
framework in only one place -- a CSS stylesheet, a Java class, etc. -- it lets
you change the framework independently from the content, which means you
can tweak it and get it right more easily.

Examples:

From http://google.com

Web page designers know how to do this well. Google's pages are simple and unfussy,
but very, very recognizable. All the signposts are clear and consistent -- the logo, the
page title ("Image Search," "Groups"), the tabs, the other links -- and the all-important
search field is always in the same place! Note also the use of Color-Coded Divisions to
distinguish one section from another.

 7

http://www.time-tripper.com/uipatterns/toplevel-navigation.html
http://www.time-tripper.com/uipatterns/titled-sections.html
http://google.com/
http://www.time-tripper.com/uipatterns/color-coded-divisions.html

UI Patterns and Techniques

From Excel for Windows

The Windows look-and-feel (or Mac OS) helps to implement a visual framework, since
colors, fonts, and controls are fairly standard. These Excel screenshots come from the
same dialog, but they illustrate the concept well -- note the consistent location of action
buttons in the upper right, the margins and alignment, and the use of label/separator pairs
to delimit Titled Sections.

Toplevel Navigation

From http://newscientist.com

Use when: You're building a large Web site, or a complex application with several
separate divisions or tools. In either case, users are likely to want to move from
one division to another.

Why: On the Web, a toplevel navigation bar is a well-established convention, so
users will expect it. More importantly, though, a set of links or buttons that
reflects the UI's highest-order structure makes that structure visible to users.
It gives them an overview of the UI, and helps them find what they need in it
(if the naming scheme makes sense, anyway). It also facilitates exploration
and easy movement, by putting each division only one click away from
anyplace else.

You can add to the utility of a toplevel navigation panel by making it show
what division the user is currently in. Thus it becomes a signpost as well as a
navigational device.

How: The most important thing is to use a sensible organizational structure to start
with. Keep the number of divisions down to something you can display in the
space available, and name the divisions well -- not too many words, meaningful
to the user, and following whatever conventions are appropriate ("About Us,"
"Products," etc.).

As for the toplevel navigation itself, design a single panel that looks the same -
- and goes into the same place -- on each page where it appears. On the Web,

8

http://newscientist.com/

 Jenifer Tidwell

that should be every page. On a desktop UI, there are far fewer conventional
uses of such a thing, but it should probably go into every major application
window (not necessarily every dialog). A good toplevel navigation panel is one
component of a well-designed Visual Framework.

To show where the user is now, simply make the link for the current division
look different from the others. Use a contrasting color, perhaps, or an
inobtrusive graphic like an arrow.

One design issue that you may run into, especially on Web pages, is how to
present this kind of navigational device along with other sets of links. They
ought to be distinct from each other. Users may look to the top of the page for
the toplevel navigation; that leaves the lefthand and righthand sides for other
links, or you could put them in the Center Stage and/or content area itself. You
could also use two very different sets of affordances -- simple clickable text for
the toplevel navigation, and tabs for more "local" things, for instance.

As with Center Stage, keep in mind that home pages and main windows may
require different layouts than other pages in the UI. If getting to the different
sections of the UI is one of the purposes of the home page or opening window,
then toplevel navigation there may need to be more prominent than everywhere
else, and you might want to flesh it out with details or sublinks.

Finally, understand that not every user will use, or even notice, a navigational
device like this. It's a common misconception among engineers and designers
that users will logically look for the overview first, then decide where to go.
They won't. They often don't care to know how the site or UI is organized, but
simply follow the nearest and most obvious signposts until they find what they
need. It's analogous to someone looking for the restrooms in a museum -- they
probably won't bother reading a map if there are signs or architectural clues.

Examples:

From http://aiga.org. Note the Flash dropdown menu, which offers more
choices in a small space.

 9

http://www.time-tripper.com/uipatterns/visual-framework.html
http://www.time-tripper.com/uipatterns/center-stage.html

UI Patterns and Techniques

From http://economist.com. This navigation bar contains other tools in
addition to toplevel links.

Color-Coded Divisions

From http://johncoltrane.com

Use when: You're building a large UI with many pages or windows, which can be
organized into divisions (chapters, sections, sub-applications, etc.). You
might be using a Visual Framework to unify them visually. But you also want
each division to have a distinctive look.

Why: This is an example of a "signpost" -- something that gives the user a clue
where they are. It does so with some subtlety; colors work visually instead of
verbally, and it's not even something that users will necessarily notice
immediately (though it's hard to miss in the vivid Coltrane example above).

10

http://johncoltrane.com/
http://www.time-tripper.com/uipatterns/visual-framework.html

 Jenifer Tidwell

But once users are attuned to the color schemes, they can use them. Even
before then, they'll know when they've left one section for another, if they
notice that the color scheme just changed.

So color-coding works to distinguish one section from another; it makes the
boundaries clear. It's easier for users to mentally map out smaller chunks of a
navigational space, e.g. one division, than the whole space at once -- you
should do this with a large UI in any case, whether you use color-coding or
not.

Creative uses of different colors could also make your UI look nicer and less
boring. It might even contribute to the branding of the UI -- see the Apple
example below.

How: Pick one of the UI colors and change it from division to division. Usually, the
background color is too much -- the Coltrane example only works because
the visual framework is so strong and distinctive. Most designs work better
with a trim color, like a border, or the background of a small amount of text.

Examples:

From http://apple.com

Apple provides us with a more typical example of color-coding. Look at the
top of each screenshot. The tab and the bar below it change color (and
texture!) to match the content -- teal for QuickTime, leopard spots for OS X
"Jaguar," etc. The effect is subdued but noticeable. It contributes to both
usability and branding, while not detracting from the unity of the overall site.
(Note that the tabs are the Toplevel Navigation in this Web site, while the
secondary navigation links live on the colored bar.)

 11

http://www.time-tripper.com/uipatterns/toplevel-navigation.html

UI Patterns and Techniques

Page Layout

Center Stage

From Microsoft Money

Use when: The page's primary job is to show coherent information to the user, or enable
them to perform certain tasks -- in other words, any information-centered or
task-centered interface. Tables and spreadsheets, forms, Web pages
containing textual content, and graphical editors all qualify.

Why: The user's eye should be guided immediately to the start of the most-
important information (or task), rather than wandering over the page in
confusion. An unambiguous central entity "anchors" their attention. Just as
the lead sentence in a news article establishes the subject matter and purpose
of the article, so the entity in center stage establishes the purpose of the UI.

Once that's done, then the user will assess the stuff in the periphery in terms
of how they relate to what's in the center. This is easier for the user than
repeatedly scanning the page, trying to figure it out -- what comes first,
what's second, how this relates to that, etc.

How: Establish a visual hierarchy with the "center stage" dominating everything
else. Consider these factors, though none of them are absolutely required:

• Size. The center-stage content should be at least twice as wide as
whatever's in its side margins, and twice as tall as its top and bottom
margins. (The user may change its size in some UIs, but this is how it
should be when the user first sees it.)

• Color. Use a color that contrasts with the stuff in the margins. In desktop
UIs, white works well against Windows gray, especially for tables and
trees. As it happens, white often works in Web pages too, since ads and
navigation bars usually use other colors as their backgrounds; also, Web
users have been trained to look for the plain text on a white background.

• Headlines. In the above example, the eye is drawn to the big text at the
top of the page. That happens in print media too, of course. See Titled
Sections for more details.

• Context. What does the user expect to see when they open up the page?
A graphic editor? A long text article? A map? A file system tree? Work

12

http://www.time-tripper.com/uipatterns/titled-sections.html
http://www.time-tripper.com/uipatterns/titled-sections.html

 Jenifer Tidwell

with their preconceptions; put that in center stage and make it
recognizable. The user will look for it -- this trumps all other rules about
visual perception. (But it doesn't mean you can frustrate the user by
hiding what they're looking for! Some Web sites put their main content
so far down the page that it's "below the fold" in short windows,
requiring the user to scroll down to find it. That's just sadistic.)

Notice that one traditional layout factor was not mentioned: position. It
doesn't much matter where you put the center stage -- top, left, right, bottom,
center, all of them can be made to work. Keep in mind that well-established
genres have conventions about what goes into which margins, e.g. toolbars on
top of graphic editors, or navigation bars on the left sides of Web pages. Be
creative, but with your eyes open.

If you're in doubt, take a screenshot of the layout, shrink it down, blur it, and
ask someone where on the page they think the main content should start.

The name of this pattern came from a paper authored by P. R. Warren and M.
Viljoen.

Titled Sections

From http://www.adobe.com

Use when: There's more than a small handful of controls or text fragments on the
page. In other words, almost always -- unless the content of your UI is
very small, or is conceptually one thing, like a textual or visual narrative.

Why: Well-defined and well-named sections structure the content into easily-
digestible chunks, each of which is now understandable at a glance. It
makes the information architecture obvious.

When the user sees a page sectioned neatly into chunks like this, their eye
is guided along the page more comfortably. The human visual system
always looks for bigger patterns, whether they exist or not. So put them in
deliberately!

How: First, get the information architecture (IA) right -- split up the content into
coherent chunks, and give them short, memorable names (one or two
words, if possible). Next, choose a presentation:

• For titles, use a font that stands out from the rest of the content --
bold, wider, larger point size, stronger color, etc. (Remember that

 13

http://www.adobe.com/

UI Patterns and Techniques

nothing's stronger than black, not even red.)

• Try reversing the title against a strip of contrasting color. White on
dark can make it look like a Windows title bar.

• Use whitespace to separate sections.

• Putting sections on different background colors works well on Web
pages and "flashy" interfaces, though it's unusual on desktop UIs.

• Boxes made from etched, beveled, or raised lines are familiar on
desktop UIs. They can get lost -- and just become visual noise -- if
they're too big, or too close to each other, or deeply nested. It can be
done well when combined with the title; see the examples.

Basically what you're doing here is building a visual hierarchy on the
screen. This is a concept from graphic design. Grouping, fonts, and
judicious use of whitespace can take you a long way.

If there's still too much stuff on one page, try Card Stack, Overview Plus
Detail, or Extras On Demand to manage it all. You can combine some of
these patterns with Titled Sections, too.

Examples:

From Eudora for Mac OS 9

A typical usage in desktop applications. In this example, the boxes look good around the
grids of checkboxes, the bold titles stand out clearly, and there is sufficient white space
between the sections to give them visual "breathing room." (In fact, this example would
work even if the boxes were erased, though it would look a little odd.)

14

http://www.time-tripper.com/uipatterns/card-stack.html
http://www.time-tripper.com/uipatterns/overview-plus-detail.html
http://www.time-tripper.com/uipatterns/overview-plus-detail.html
http://www.time-tripper.com/uipatterns/extras-on-demand.html

 Jenifer Tidwell

From a Javadoc HTML page

This screenshot came from a long page full of programmer-level Java documentation.
Each section is labeled with the blue bars, which are very easy to find and read as the
user scrolls rapidly down the page.

Card Stack

From Internet Explorer for Windows

Use when: There's too much stuff on the page. A lot of controls or texts are spread
across the UI, without benefit of a very rigid structure (like a Property
Sheet); the user's attention becomes distracted.

Why: The labeled "cards" structure the content into easily-digestible chunks,
each of which is now understandable at a glance. It makes the
information architecture obvious.

Tabs, especially, are very familiar to users. Finally, Card Stacks save
space.

How: First, get the information architecture (IA) right -- split up the content
into coherent chunks, and give them short, memorable names (one or

 15

UI Patterns and Techniques

two words, if possible). Then choose a presentation:

• Tabs are great, but they usually require 6 or fewer cards. Don't
"double-row" them; scroll them horizontally if you must.

• A lefthand column of names works well on many Web pages and
dialogs. You can fit a lot of cards into one of these. It lets you
organize them into a hierarchy, too. (At some point it becomes more
like an Overview Plus Detail; there's really no clear boundary
between them, technically.)

• Some UIs have a dropdown list at the top of the page, which takes
less space than a link column, but at the cost of clarity. It can work
if the containment is very, very obvious; see the example.

Remember that if you split it up wrong, users will be forced to switch
back and forth between cards as they enter information or compare
things. Be nice to your users and test the IA.

Examples:

From Internet Explorer for OS X

In Mac OS X, there are many applications that use dropdown lists (here showing "Copies
& Pages") in places where tabs might have be used. Dropdowns are space-conserving,
and allow for long or numerous page names, but the user can't see what other pages are
available until they open the dropdown list. Note the box around the controls; this kind of
containment is necessary for a user to understand what the dropdown does. Otherwise, it
just looks like another control, not a navigational device.

16

http://www.time-tripper.com/uipatterns/overview-plus-detail.html

 Jenifer Tidwell

Also from Internet Explorer

This time the selector is a list on the left. This example walks the line between Card Stack
and Overview Plus Detail.

From Visio for Windows

The "tab" buttons in this Visio palette are vertically stacked, and they move from top to
bottom as the user clicks them, so that the selected page always has its button directly
above it. This is an interesting solution for a constrained, vertically-oriented space.

 17

http://www.time-tripper.com/uipatterns/overview-plus-detail.html

UI Patterns and Techniques

Overview Plus Detail

From Adobe PDF viewer

Use when: The UI presents something -- a composite object, a collection of things, etc. --
that's too complex or dynamic to show in just one page. Titled Sections
doesn't scale; the set of "cards" needed for a Card Stack is big or changing, or
they won't fit into a simple linear model.

Why: It's an age-old way of dealing with complexity: present a high-level view of
what's going on, and let the user "drill down" from that view into the details
as they need to, keeping both levels visible on the page for quick iteration.

An information hierarchy is at work here again, just like Titled Sections and
Card Stack. You defeat complexity via divide-and-conquer. Overview Plus
Detail structures the content into comprehensible pieces, and you organize
them as the content dictates.

How: The composite object serves as a selectable "index." Put it on the lefthand
side. When the user selects some part of it, details about that part -- controls,
text, data, etc. -- appears on the other side. (You might also choose to put the
index object on the top, with the details below.)

What exactly is the "composite object?" It depends. A file system viewer may
show the file hierarchy. A map browser may show a map with selectable grid
squares. A GUI builder may simply use the layout canvas itself -- selected
objects on it show their properties as the "details."

Keeping both halves on the same page or window is key. You can put the
details into a separate window, but it's not as effective. You want the user to
be able to browse easily and fluidly through the UI, without waiting or
messing around with windows.

This pattern is easier to illustrate than talk about.

18

http://www.time-tripper.com/uipatterns/titled-sections.html
http://www.time-tripper.com/uipatterns/card-stack.html

 Jenifer Tidwell

Extras On Demand

From the Windows color dialog

Use when: There's too much stuff on the page, but some of it isn't very important. You'd
rather have a simpler UI, but you have to put all this content somewhere.

Why: A simple UI is an excellent thing, especially for new users, or users who don't
need the full functionality you can provide. Let the user choose when to see
the entire UI in its full glory -- they're a better judge of that than you are.

If your design makes 80% of the use cases easy, and the remaining 20% are
at least possible (with a little work on the user's part), your UI is doing as
well as can be expected!

When done right, it can save space, too.

How: Ruthlessly prune the UI down to its most commonly-used, most important
items. Put the remainder into their own page or section. Hide that section by
default; on the newly-simplified UI, put a clearly-marked button or link to the
remainder, e.g. "More Options."

That section should have another button or other affordance to let the user
close it again. Remember, most users won't need it most of the time. Just
make sure the entrance and exit to this "extras" thing are obvious; test them.

On some dialog boxes, the box literally expands to accommodate the details
section, then shrinks down again when the user puts it away. This works well.
Another mechanism is found on various desktop UIs: a dropdown for fill
color, for instance, contains a "More Fill Colors..." item which brings up a
separate dialog box.

 19

UI Patterns and Techniques

Dynamic Progression

From an ATM redesign

Use
when:

The user should be walked through a complex UI task step-by-step, perhaps
because the user is computer-naive, or because the task is rarely done. But you don't
want something as constraining as a wizard -- you'd rather keep the whole
interface on one page, for instance.

Why: As the user sees the task unfolding directly in front of them, via a dynamically-
changing UI, they can form a correct mental model of the task more quickly and
easily. There are none of the awkward context switches that separate wizard
screens impose.

Furthermore, since the UI is kept together on one page, the user can very easily go
back and change their mind about earlier choices; they immediately see the effect
on subsequent steps.

For occasional tasks, this can work better than presenting a complex and interlinked
set of controls all at once, because it's always obvious what the first step is -- and
the next, and the next! The user never has to think too hard.

How: Show the controls for only the first step; when the user's done with that step, show
the controls for the next step; etc. "Show" may mean "enable," or literally place on
the page. Leave the previous steps' controls visible, so the whole UI is progressively
revealed.

In many such step-by-step designs, the choices the user makes at one step alters the
rest of the task. For instance, an online order form asks if the billing address is the
same as the shipping address. If the user says yes, then the UI doesn't even bother
showing entry fields for it. Otherwise, there's one more step in the process.

20

 Jenifer Tidwell

Property Sheet

From the Curl Surge Lab IDE

Use when: The UI presents an editable object to the user -- something built in a
graphical editor, or a database record or query, or some domain-specific thing
(like a car or a stock purchase). The user will need to change the properties or
attributes of the object.

Why: Most users are familiar with the concept of a property sheet -- a list of object
properties or settings, set forth in a prescribed order, editable via controls
appropriate for the property types (text fields for strings, dropdowns for one-
of-many choices, etc.). Simply because they're conventional, well-designed
property sheets are generally easy to use.

Property sheets can also help the user build a correct mental model of the
objects in the UI. A property sheet tells the user what the object's properties
are, and what values are available for each of them. Especially in applications
that mix WYSIWYG editing with programming (such as GUI builders, Web
page builders, and time-based scripting and animation tools), property editors
thus help the user learn how to use the system.

How: The only commonality here is that the various edit controls are labeled with
the names of the properties they edit. When the user is done filling in values,
the new property values are written out to the object.

These are the issues that usually come up when designing property sheets:

• Layout. Some systems use a two-column table, with controls that appear
when the user clicks the values shown in the righthand column. (Visual
Basic seems to be the de facto standard for this approach.) Others look
more like dialogs than tables -- text fields beside controls. Use your
judgement. Tables might be more recognizable as property sheets, but
dialogs can be far more flexible in their presentation of the property-
editing controls.

• Property order. Alphabetical? Categorized? Or an easy-to-read order

 21

UI Patterns and Techniques

that places the most commonly-edited properties at the top? They all have
their place. Short property sheets (say, 10 or fewer properties) are usually
best with the most common properties listed first. The longer the list gets,
the more important it is to categorize them; but if a user is looking for
one particular property by name, they may want to sort them
alphabetically. As always, it's best to give users a choice. But you're still
responsible for picking the right default order.

• Control choice. Fifty pages could be written about this. The short
version: make sure the property's current value is always there to be seen;
choose controls to constrain the input as much as possible, e.g. by using
non-editable dropdown lists for one-of-many choices; use built-in fancy
editors for specialized types like colors, fonts, and filenames.

• When to commit the new property values. Many UIs simply update the
object with the new value as soon as the user is done typing or selecting a
value. The more dialog-like property sheets may wait until the user
deliberately commits the whole thing, e.g. by clicking on an "OK" button.
But if your software can deal well with instant update, that gives the user
more immediate feedback about the change they just made.

• "Mixed" values for multiply-selected objects. Some UIs solve this by
showing no value at all, which can be dangerously misleading. Others
show it with a sentinel value, like an asterisk "*", or the word "mixed."

Cascading Lists

A font dialog from Mac OS X

Use when: The user needs to navigate a hierarchy that isn't very deep, but might have
many items on each level. An outline or "tree control" would work, but the
user would be scrolling up and down a lot to see all the items, and they
wouldn't get a good overview of the items at higher levels in the hierarchy.

The hierarchy may be a literal one, such as a filesystem, or a conceptual one -
- this pattern is often used to let a user navigate and choose items within
categories, or make a series of interdependent choices, as with the fonts
above.

Why: By spreading the hierarchy out across several scrolled lists, you show more
of it at once. It's that simple. Visibility is good when you're dealing with

22

 Jenifer Tidwell

complex information structures. Also, laying the items out in lists organizes
them nicely -- a user can more easily keep track of what level they're dealing
with than they could with an outline format, since the hierarchy levels are in
nice predictable fixed-position lists.

How: Put the first level of the hierarchy in the leftmost list (which should use
single-selection semantics). When the user selects an item in it, show that
item's children in the next list to the right. Do the same with the child items in
this second list; show its selected item's children in the third list. And so on.

Once the user reaches items with no children -- the "leaf" items, as opposed
to "branches" -- you might want to show the details of the last-selected item
at the far right. In the Mac Finder example below, a representation of an
image file is shown; you might instead offer a UI for editing an item, or for
reading its content, or whatever is appropriate for your particular application.

A nice thing about this pattern is that you can easily associate buttons with
each list: delete the current item, move up, move down, etc. Many toolkits
will let you do this in tree controls via direct manipulation, but for those that
don't, this is a viable alternative. See the examples.

Examples:

From Excel for Windows

It may not look like one, but this Excel chart-type chooser is a two-level cascading list,
expressed with two different visual formats. It uses a category / item information
architecture. The user's selection in the "Chart sub-type" list is described with its name
and a Short Description. (Note also the use of a Card Stack and Illustrated Choices in
this dialog.)

 23

http://www.time-tripper.com/uipatterns/short-description.html
http://www.time-tripper.com/uipatterns/card-stack.html
http://www.time-tripper.com/uipatterns/illustrated-choices.html

UI Patterns and Techniques

From PowerPoint for Windows

Though simpler than the Excel example, this one uses the same two-level structure, and it
uses a similar category / item information architecture.

From the Mac OS X Finder

This is an extreme example, but it shows that the pattern scales well, letting the user drill
down into very deep filesystem hierarchies while staying oriented. NextStep originally
used this technique in its file finder, circa 1989 or so.

24

 Jenifer Tidwell

Liquid Layout

From http://www.saila.com

Use when: The user might want more space -- or less -- in which to show the content of
a window, dialog, or page. This is likely to happen whenever a page contains
a lot of text (as in a Web page), or a high-information widget like a table or
tree, or a graphic editor. It doesn't work so well when the visual design
requires a certain amount of screen real estate, no more, no less.

Why: Unless you're designing a "closed" UI like a kiosk or a full-screen video
game, you can't predict the conditions under which the user is going to
view your UI. Screen size, font preferences, other windows on the screen, the
importance of any particular page to the user -- none of this is under your
control. How, then, can you decide the one optimal page size for all users?

Giving the user a little control over the layout of the page makes your UI
more flexible under changing conditions. It may also make the user feel less
antagonistic towards the UI, since they can bend it to fit their immediate
needs and contexts.

If you need more convincing, consider what happens to a fixed-layout "non-
liquid" UI when the language or font size changes. Do columns still line up?
Do pages suddenly become too wide, or even clipped at the margins?
Generally, pages engineered to work nicely with window size changes will
also accommodate these other changes.

How: Make the page contents continuously "fill" the window as it changes size.
Multiline text should wrap at the right margin, until it becomes four or five
inches wide (at which point it becomes too hard to read). Trees, tables,
editors, etc. at Center stage should enlarge generously while their margins
stay compact. If the page has anything form-like on it, horizontal stretching
should cause text fields to elongate -- users will appreciate this if they need to
type in anything longer than the text field's normal length. Likewise, anything
scrolled (lists, tables, etc.) should lengthen, and possibly widen too.

Web pages and similar UIs should allow the body content to fill the new
space, while keeping navigational devices and signposts anchored to the top
and left margins. Background colors and patterns should always fill the new
space, even if the content itself cannot.

What happens when the window gets too small for its content? You could put

 25

UI Patterns and Techniques

scrollbars around it. Otherwise, white space should shrink as necessary;
outright clipping may happen when the window gets really tiny, but the most
important content hangs in there to the end.

A well-behaved Liquid Layout can be difficult to implement in Web pages,
especially if you want to dispense with tables and use straight CSS. It's also
hard in Visual Basic and Visual C++. Java, however, provides several layout
managers that can be used to implement it.

Examples:

From a file-open dialog in Mac OS X.

Mac OS allows you to resize the standard "Open" dialog, which uses a liquid layout. This
is good because the user can see as much of the filesystem hierarchy as they want, rather
than being constrained to a tiny predetermined space. (The Cascading Lists pattern is
used in this dialog, too.)

Forms and Input

Chooser Button

From Netscape 6

Use when: The user needs to provide a one-line name or reference for something, such
as a file, printer, image, color, font, etc.

Why: It's great if the user can remember the name or path to type, but very often
they won't. The UI should let the user go look for the object in question, to
select it from a broader or more familiar context; this helps prompt the user's
memory, and spares them the effort of memorizing (and typing in) the name
of the object.

If you only provide a plain text field, the user will probably go use some
other tool -- an OS-provided tool, or another application -- to look up the

26

http://www.time-tripper.com/uipatterns/cascading-lists.html

 Jenifer Tidwell

object in question. But that's inconvenient, and by switching to a different
tool and context, the user's work flow is broken up.

How: Put a button at the end of the text field that launches a chooser or finder of
some sort. That button might have descriptive text, such as "Choose...",
"Browse...", "Find...", or a descriptive image, or just "...". See what works for
your users. In general, users understand that "..." on a control means it'll
prompt them for more input.

When the user has selected something from the finder (which is usually a
modal dialog), close it and put the results into the text field. Now the next
time the user wants to specify that object, they know what text to use for it.

The same idea applied to dropdown lists and combo boxes can be
implemented with a "More..." or "Custom..." item (for example) at the end of
its menu. MS Office does this with many of its dropdowns, especially for
color choice.

Examples:

From MS Word

Also from Netscape 6

 27

UI Patterns and Techniques

Fill-in-the-Blanks

From http://amazon.com

Use when: Form input is required to perform some action. A property-sheet-style
label/text-field format isn't self-explanatory, but you can verbally describe
the action to be taken.

Why: We all know how to finish a sentence! (A verb phrase or noun phrase will do
the trick, too.) Seeing the input, or "blanks," in the context of a verbal
description helps the user understand what's going on and what's required of
them.

How: Write the sentence or phrase, using all your wordcrafting skills. Put the
controls in place of words. If you're going to embed the controls in the
middle of the phrase, instead of at the end, this works best with text fields,
dropdown lists, and combo boxes -- in other words, controls with the same
"form factor" as words in the sentence.

Also, for controls in the middle of the phrase, make sure the baseline of the
sentence text lines up with the text baselines in the controls, or it'll look
sloppy. Size the controls so that they are just long enough to contain the
user's choices, and maintain word spacing between them and the surrounding
words.

Keep in mind that this pattern makes it very hard to properly localize the UI,
since it depends upon word order in a natural language. You may have to
rearrange the UI to make it work in a different language.

Examples:

From the InConcert Order Browser

From the Mac OS X system preferences

28

 Jenifer Tidwell

Input Hints

From the Mac OS X system preferences

Use when: The UI presents a text field, but the kind of input it requires isn't patently
obvious to all users.

Why: If the UI is self-explanatory, the users don't have to guess what to type --
they don't even need to think about it!

How: Write a short example or explanatory sentence, and put it below the text
field. Two examples conjoined by "or" works fine too. Keep the text small
and inconspicuous (though readable); consider using a font two points
smaller than the label font.

Input Prompt

From http://rei.com

Use when: The UI presents a text field, dropdown, or combo box for which user input is
required. Normally you would use a good default value, but you can't in this
case -- perhaps there is no reasonable default, perhaps for technical or
political reasons.

Why: If the UI is self-explanatory, the user doesn't have to guess whether they
have to deal with this control or not -- the control itself tells them.

Default values are helpful, but as a user scans the UI looking for things they
have to do to proceed, they might skip right over a control whose value they
really ought to set. (Remember that users don't fill out forms for fun -- they'll
do as little as needed to finish up and get out of there!) An imperative "Fill
me in!" is likely to be noticed by the user.

How: Choose an appropriate prompt string, perhaps beginning with one of these
words:

• For a dropdown list, use Select, Choose, or Pick.

• For a text entry control, use Type or Enter.

End it with a noun describing what the input is, e.g. "Choose a state," "Type

 29

UI Patterns and Techniques

your message here," "Enter the patient's name." Put this phrase into the
control, where the value would normally be. (It shouldn't be a selectable
value in a dropdown.)

Since the point of the exercise was to tell the user what they were required to
do before proceeding, don't let the operation proceed until they've done it! As
long as the prompt is still sitting untouched in the control, disable the button
(or whatever) that lets the user finish this part of the operation. That way, you
won't have to throw an error message at the user.

Examples:

From Powerpoint

Forgiving Format

From http://wunderground.com

Use when: Your UI can accept input of various kinds from the user -- different
meanings, different formats, etc. -- but you don't want to clutter up the UI
with a bunch of separate text fields to "type this OR that OR that OR...".

Why: The user just wants to get something done, not think about complicated
either-or choices and fiddly UIs. Computers are good at figuring out how to
handle input of different types (up to a point, anyway). It's a perfect match:
let the user type whatever they need, and if it's reasonable, make the software
do the right thing with it.

This can help simplify the UI tremendously. It may even remove the
requirement for an Input Hint, though they're often seen together.

How: The catch (you knew there would be one): It turns a UI design problem into a
programming problem. You have to think about what kinds of stuff a user
is likely to type in -- maybe you're asking for a date or time, and the variation
will just be in the format. That's an easy case. Or maybe you're asking for
search terms, and the variation will be in what the software does with the

30

 Jenifer Tidwell

data. That's harder. Can the software disambiguate one case from another?
How?

Each case is unique. Just make sure that the software's response to various
input parameters matches what users expect it to do. Test, test, and test again
with real users.

Remembered Choices

Use when: The user is likely to reenter text previously typed, or repeat choices
previously made. In particular, they might come back later and have to
reenter entire sets of choices or settings.

Why: Save the user the trouble of redoing all these things, and remember the
previous settings for them. Computers are good at that. People aren't.

How: There are several techniques you can use to do this. From the simplest to the
most complex:

• Use the previous value of the control as the default value. This works for
all kinds of controls -- text fields, dropdowns, radio buttons, lists, etc.

• If you're using a text field, turn it into a combo box (which is a
combination of a typable text field and a dropdown). Each time the user
enters a unique value into the text field, make a new dropdown item for
it. If you really want to get fancy, use the dropdown items to do
automatic completion on what the user's typing!

• Let the user save a whole page of settings. The user names the group of
settings and saves it under that name; later, they can choose to load those
settings by name.

Illustrated Choices

From the Mac OS X system preferences

Use when: The UI presents a set of choices that differ visually, e.g. colors, font families,
or alignment.

Why: Why translate a visual concept into words, when showing it visually is so
much more direct? You reduce the cognitive load on the user -- they don't
have to think about what "goldenrod" or "Garamond" might look like -- while
simultaneously making the interface more attractive. (Hopefully.)

How: Each thumbnail (or color swatch or whatever) should be accurate, first and
foremost. What the user sees on the illustrated choice should be what they
get. Beyond that, show the differences that matter, and little else; there's no

 31

UI Patterns and Techniques

need for perfect miniature reproductions of the choices' effects. Show a
simplified, streamlined, and exaggerated picture.

These can be used in dropdown lists, radio boxes, scrolled lists, tables, trees,
and specialized dialogs like color choosers. Ideally, you can show the user a
set of illustrated choices all at once, in one single dropdown or list or toolbar.
A user can then compare them to each other immediately and easily. If you
show them one at a time -- which sometimes must be the case, as with the
Preview pattern -- the user sees them sequentially over time, which isn't as
good for comparing one to another.

Sometimes it's appropriate to show both the picture and the item's name. If
the user would benefit from seeing both of them, do it -- they'll learn to
associate the name with the picture, and thus the concept. UIs can teach.

If you need custom icons or thumbnail pictures, consider getting a good
graphic designer to do the artistic work. Make sure they are sensitive to the
visual vocabulary of the whole application, and that they understand what the
choices mean.

Examples:

From Excel for Windows

32

http://www.welie.com/patterns/gui/preview.html

 Jenifer Tidwell

From Word for Windows

Tables

Sortable Table

From Windows Explorer

Use when: The UI displays multivariate information that the user may want to explore,
reorder, customize, search for a single item, or simply understand on the basis
of those different variables.

Why: Giving the user the ability to change the sorting order of a table has powerful
effects. First, it facilitates exploration. A user can now learn things from the
data that they may never have been able to see otherwise -- how many of this
kind? what proportion of this to that? is there only one of these? what's first
or last? etc. Suddenly it becomes easier to find specific items, too; a user

 33

UI Patterns and Techniques

need only remember one attribute of the item in question (e.g. its last-edited
date).

Furthermore, if the sort order is retained from one invocation of the software
to another, this is a way for the user to customize the UI. Some want the
table sorted first to last; some last to first; some by a variable no one else
thinks is interesting. It's good to give a user that kind of control.

Finally, the clickable-header idiom is familiar to many users now.

How: Choose the columns (i.e., the variables) carefully. What would a user want
to sort by or search for? Conversely, what doesn't need to be shown in this
table -- what can be hidden until the user asks for more detail about a specific
item?

The table headers should have some visual affordance that they can be
clicked on. Most have beveled, button-like borders. Up-or-down arrows
should be used to show whether the sort is in ascending or descending order.
(And the presence of an arrow shows which column was last sorted on -- a
fortuitous side effect!) Consider using Rollover Effects on the headers to
reinforce the impression of clickability.

Try to use a stable sort algorithm. What this means is that if a user sorts first
by name, then by date, the resulting list will show ordered groups of same-
date items that are each sorted by name within the group. In other words, the
current sort order will be retained in the next sort, to the extent possible.
Subtle, but very useful.

If your UI technology permits, the columns may be reordered by dragging
and dropping. Java Swing has this feature.

Tree-Table

From Outlook Express's news reader

Use when: The UI displays multivariate information, so a table works well to show the
data (or allow them to be sorted, as in Sortable Table). But the items are
primarily organized as a hierarchy, so you also want a tree, or outline, to
display them.

Why: Combining the two data-viewing approaches into one gives you the best of
both worlds, at the cost of some visual and programming complexity. You
can show the hierarchy of items, plus a matrix of additional data or item
attributes, in one unified structure.

How: The examples show what you need to do: put the tree (really an outline) in

34

 Jenifer Tidwell

the first column, and the item attributes in the subsequent columns. The rows
-- one item per row -- are usually selectable. Naturally, this can be combined
with Sortable Table to produce a more browsable, interactive structure.

This technique seems to have found a home in email clients and news
readers, where threads of discussion form treelike structures.

Alternating Row Colors

From iTunes for Mac OS X

Use when: A table's rows are difficult to separate visually, especially when there are
many columns, or multiple lines to a row.

Why: Blocks of gentle color define and separate the information contained
therein, even when you can't use much whitespace between them.
Cartographers and graphic designers have known this for ages. (Remember
that colored backgrounds are also effective in defining Titled Sections.)
Specifically, alternating row colors help a user:

• follow a row from left to right and back again, without getting the rows
confused; and

• see the "footprint" of the table itself, as separate from its containing
page.

How: Pick a pair of quiet, low-saturation colors that are similar in value, but not
identical. (In other words, one needs to be a wee bit darker than the other.)
Good choices are blue and white, beige and white, or two similar shades of
gray -- assuming the text on top of them is dark, anyway. Generally, one of
the colors is your page's background color.

Alternate the color from row to row. If the rows are thin, you could also
experiment with grouping the rows: the first three are white, the next three
are blue, etc.

This pattern pretty much eliminates the need for horizontal lines between the
rows (though you could use that instead, if the lines are very thin and
inconspicuous). If your columns are aligned with each other, you don't need
vertical lines, either, nor a heavy border around the table -- the row colors
will define the edges of the table for you.

 35

UI Patterns and Techniques

Examples:

From http://mathworks.com

Direct Manipulation

Edit-in-Place

Use when: The UI contains text labels that the user may want to change sometimes --
the names of objects, for instance. They may be in a graphical editor, or a
table, or a tree, or wherever.

Why: If one wants to edit something, it makes sense to try to edit it where it lives.
Making the user go somewhere else -- a place far away spatially, or
disconnected from the original text in another window -- isn't usually ideal; it
can be harder to find (though not always), and it takes longer than just
clicking on the text and typing in place.

How: When the user clicks or, more typically, double-clicks on the text to be
edited, simply replace it with a text field containing the string (which should
immediately be selected). If a text-entry cursor appears in the right place,
and/or the text is automatically selected, that may be enough of a cue to the
user to start editing; no border is necessary around the text field. Keep it in
the same physical location, and retain the display font -- in short, make it as
WYSIWYG as possible.

One-off Mode

Use when: You're building a graphical editor, and there are certain operations -- such as
creating objects -- that users don't normally repeat or iterate over. Usually,

36

 Jenifer Tidwell

the user will perform the operation once, then immediately want to do
something else, like manipulating the object just created.

Why: Users will find it annoying to switch into a mode, do one little thing, then
explicitly switch out of that mode again -- this often involves clicking on
small "hit targets" in palette windows far away from the working canvas.
(Here, mode is defined as an application-wide state that temporarily changes
the behavior of the mouse pointer.) Too much "clickiness" in an interface is a
known irritant!

Instead, the interface should do what makes the user's job easier, even if it's
not conceptually tidy or easy to program: when the user enters the mode in
question, stay in it for only one operation, then automatically leave the
mode.

How: The hardest part is deciding which operations ought to behave like this.
Object creation typically does; zooming, lassoing, paint strokes, etc. typically
don't. Find out what graphical editors your users tend to use most, and see
what they do.

An example might make all this clearer. Consider a drawing tool in which
mouse-clicking on the canvas normally selects objects underneath the mouse
pointer:

• User clicks the "Create rectangle" button on a palette. The UI goes into a
special creation mode, indicated by a rectangle cursor -- now, clicking on
the canvas will mean object placement, not selection.

• User clicks once on the canvas, to place the upper-left corner.

• User clicks again on the canvas, to place the lower-right corner.

• The UI, having counted two clicks and created the rectangle, leaves its
rectangle-creation mode and goes back to the default mode, in which
clicking means selection.

• User is now free to select objects, move them, resize them, etc. without
having to go back to the palette to change mode.

Constrained Resize

From Powerpoint for Windows

Use when: You're building a graphical editor which lets the user resize objects
interactively. But sometimes a user may want to preserve the object's aspect

 37

UI Patterns and Techniques

ratio, for instance -- especially in the case of images or formatted text -- or
the position of its geometrical center. Normal drag-the-corner interactive
resizing makes this difficult or fiddly.

Why: Quite simply, this can save the user a lot of work. If the UI constrains the
resize to work in certain ways -- such as by forcing the width and height to
remain in the same proportion -- then the user can focus on what they want
the built artifact to look like, not on getting the aspect ratio just right.

If the user doesn't have this degree of control over the interface, they might
have to resort to doing the resize by typing numbers into a form. That's
almost never as nice as doing it via direct manipulation, since it breaks up the
user's flow of work.

How: This is basically a modified resize mode, so it should behave mostly like your
normal resize -- by dragging a corner or edge of the object to be resized.
Consider using a modifier key to differentiate it from the normal resize, e.g.,
the user holds down the "Shift" key while dragging. Or if you think most
users are always going to want the constraint, make it the default resize
operation. Word does this with images.

As the user drags the mouse cursor, a resize box should be drawn to show the
new dimensions. Whatever kind of constraint you're imposing, show it via the
box.

There are many reasons why one might constrain a resize. Some variations on
a theme:

• Leave the object's geometric center in the same place, and resize
symmetrically around it.

• Resize by units larger than pixels. For instance, a GUI builder may
require that a list box's height be some integral number of text lines.
(Probably not a good idea in general, but if that's what you've got to work
with, the UI should reflect that.) Or you may be working with a snap-to-
grid. In any case, the resize box should "jump" from one size to the next.

• An object may have a size limit. Once the user has hit the size limit in
one dimension or the other, don't let the resize box expand (or contract, as
the case may be) any further in that dimension.

38

 Jenifer Tidwell

Composite Selection

From Visual C++

Use when: You're building a graphical editor which may contain composite objects --
things that can be moved and otherwise manipulated, but happen to contain
other objects. This is especially common in GUI builders.

You want the user to be able to "lasso" child objects and create new ones
inside the composite, but that means clicking on the composite's background.
Should that select the composite, or not? The mouse click has two
interpretations, reflecting the double role -- parent and child -- that the
composite is playing. What to do?

Why: Obviously one of these interpretations has to win out; the user needs to be
able to predict what's going to happen when they click the mouse on the
composite's background! Two different kinds of selection -- one for
composites, and one for "leaf" objects that are not composites -- solves the
problem (albeit in a rather brute-force fashion). The two selection modes are
similar, but respond differently to mouse events like clicking and dragging.

How: Visual C++ seems to have the most elegant solution to this problem. Its group
boxes (which, in fact, are not really composites, but that's not relevant to the
discussion) can't be selected unless the user clicks near the edge of the object.
Mouse clicks inside the object operate on the contents, either by starting a
lasso or by selecting a contained object. Dragging the composite is also done
via the edges; resizing can only be done via the eight selection handles. This
puts some limits on direct manipulation, but it's a simple mechanism, and
easily understood once you know what's going on.

 39

UI Patterns and Techniques

Miscellaneous

Smart Menu Items

From Word for Windows

Use when: Your UI has menu items that operate on specific objects, like "Close", or that
behave slightly differently in different contexts, like "Undo."

Why: Menu items that always say exactly what they're going to do make the UI
self-explanatory. The user doesn't have to think about what object is going to
be affected -- they're also less likely to accidentally do something they didn't
mean, like deleting "Chapter 8" instead of "Footnote 3."

How: Every time the user changes the selected object (or current document, or last
undoable operation, etc.), change the menu items that operate on it to include
the specifics of the action. Obviously, if there is no selected object at all,
you'll want to disable the menu item, thus reinforcing the connection between
the item and its object.

Incidentally, this could also work for button labels, or links, or anything else
that is a "verb" in the context of the UI.

What if there are multiple selected objects? There's not a whole lot of
guidance out there -- this pattern is mostly seen with documents and undo
operations -- but you could write in a plural, like "Delete Selected Objects."

Rollover Effects

Use when: You've put clickable things on your UI, but you don't want to make them all
look like big clunky buttons. Static visual affordances like beveled borders
aren't what you want -- perhaps because they take up too much space, or
because they don't work with the design, or or because hunting for clickable
items is part of the fun for the user.

Why: Anyone who's used the Web now knows that if something changes when
you roll the mouse pointer over it, it's clickable. The motion of the pointer
causes the affordance to appear.

Another advantage of rollover effects is that the user doesn't need to think
about whether or not the pointer is really over an object. They gesture at it,
and when they see the object or mouse pointer change out of the corner of
their eye, they can click on it. Thus it frees up a little more of the user's vision

40

 Jenifer Tidwell

and attention.

How: There are many, many ways to do this. Naturally, they can be combined (and
frequently are). Multiple affordances are better than just one.

• The object's color changes, either the text or the background. Most Web
sites do this; HTML links do so automatically. Internet Explorer on
Windows makes rolled-over buttons go from grayscale to color.

• Something nearby changes. Perhaps a title or a short description of the
item is shown in a designated place; perhaps an image changes.

• The mouse pointer itself changes. UI toolkits provide plenty of built-in
cursor shapes for specific situations -- I-beams for text entry, hands for
dragging or button-clicking, etc. Use them where you can. They're
standard and expected.

• The object's size changes, or it becomes animated. Please resist the urge.
Your users will thank you.

A word of warning: Don't depend too much on rollover effects. The
clickable things should bear some visual resemblance to familiar conventions,
e.g. text links down the left side of a page. A user shouldn't be expected to go
a-hunting for links that aren't recognizable without moving the mouse pointer
across every square inch of the page! If in doubt, test with real users.

Short Description

Use when: There are elements in the UI whose purpose or meaning aren't obvious or
might be hard to remember.

Why: A concise description of the element, placed beside it, makes the UI self-
explanatory. If the user's never seen this part of the UI before, they have
something to go on; if they've forgotten what the element is, the description is
a convenient reminder. Thus it also reduces memory demands on the user.

How: Write a descriptive phrase -- no longer than two sentences -- that succinctly
defines the element in the context of the UI. When the user selects the
element or rolls over it (see Rollover Effects), show the short description,
either on the page or in a floating "tooltip."

Normally you write several of these at once, for items in a list or buttons on a
toolbar. Use parallel grammatical constructions in the descriptions. For
instance, make them all start with a verb ("Cut selection," "Copy selection,"
etc.) or a noun ("Fill color," "Border color").

In older UIs, you might see short descriptions show up in status bars, at the
bottom edges of application windows. These are too far away from the item
in question -- users rarely saw them! Spatial proximity is important.

 41

http://www.time-tripper.com/uipatterns/rollover-effects.html

UI Patterns and Techniques

Progress Indicator

From Internet Explorer 5

Use when: A time-consuming operation interrupts the UI for longer than two seconds or
so.

Why: Users get impatient when the UI just sits there. Even if you're changing the
mouse pointer to a clock or hourglass (which you should in any case), you
don't want to make a user wait for some unspecified length of time.

It's been shown experimentally that if users see an indication that something
is going on, they're much more patient, even if they have to wait longer.
Maybe it's because they know that "the system is thinking," and it isn't just
hung or waiting for them to do something.

How: Show an animated indicator of how much progress has been made. Either
verbally or graphically (or both), tell the user:

• what's currently going on,

• what proportion of the operation is done so far,

• how much time remains, and

• how to stop it.

As far as time estimates are concerned, believe it or not, it's OK to be wrong
sometimes, as long as your estimates converge on something accurate
quickly. But sometimes the UI can't tell how far along it is. In that case, show
something animated anyway which is noncommittal about percentages. Think
about the browsers' image loops that keep rolling while a page is loading.

Most GUI toolboxes now provide a widget or dialog that implements this
pattern, like Java Swing's JProgressBar. Beware of potentially tricky
threading issues around these, however -- the progress indicator must be
updated consistently, while the operation itself proceeds uninhibited. And if
you can, keep the rest of the UI alive too.

42

 Jenifer Tidwell

Command History

From Photoshop 6

Use when: The user performs a sequence of actions in the UI. This seems to be found
most often in graphical editors and programming environments.

Why: Sometimes a user needs to remember what they did in the course of
working with the UI. Computers are good at keeping track of things like that;
people aren't. For instance, the user may want to repeat a sequence of
operations on a different object.

Furthermore -- and this is just as important, but for different reasons --
sometimes a user will want to reverse those actions. Reversibility gives
users the freedom to play and explore. They know that whatever they do, they
can go back to a known state, and not have to worry about doing permanent
damage to whatever they're working with. A recorded sequence of actions
enables them to undo as many "levels" as they wish.

How: The software your UI is built on first needs to have a strong model of what an
action is -- what it's called, what object it was associated with, how to reverse
it, etc. Then you can build an interface on it.

Multi-level undo (i.e., being able to undo multiple operations) should be the
first thing you implement, as it's probably the first thing a user will look for if
they suspect the UI has a record of actions taken. Then, if you think it's worth
the interface complexity, show the list of actions somewhere in the UI. Name
them well, and let the user use that list to go backwards some arbitrary
number of steps.

The "back" button on a Web browser serves a very similar function as
command history.

 43

	UI Patterns and Techniques
	Table of Contents

	Introduction
	About Patterns
	Other Pattern Collections

	Whole UI
	Visual Framework
	Toplevel Navigation
	Color-Coded Divisions

	Page Layout
	Center Stage
	Titled Sections
	Card Stack
	Overview Plus Detail
	Extras On Demand
	Dynamic Progression
	Property Sheet
	Cascading Lists
	Liquid Layout

	Forms and Input
	Chooser Button
	Fill-in-the-Blanks
	Input Hints
	Input Prompt
	Forgiving Format
	Remembered Choices
	Illustrated Choices

	Tables
	Sortable Table
	Tree-Table
	Alternating Row Colors

	Direct Manipulation
	Edit-in-Place
	One-off Mode
	Constrained Resize
	Composite Selection

	Miscellaneous
	Smart Menu Items
	Rollover Effects
	Short Description
	Progress Indicator
	Command History

